$解:设S=1+\frac{1}{2}+\frac{1}{2²}+\frac{1}{2³}+...+\frac{1}{2^{2024}},$
$则\frac{1}{2}S= \frac{1}{2}+\frac{1}{2²}+\frac{1}{2³}+\frac{1}{2^{4}}+...+\frac{1}{2^{2025}}$
$两式相减,得\frac{1}{2}S=1-\frac{1}{2^{2025}},$
$所以S=2-\frac{1}{2^{2024}},$
$所以原式=2-\frac{1}{2^{2024}}$