电子课本网 第53页

第53页

信息发布者:
$ \begin{aligned}解:原式&=33333×3×22222+33333×33334 \\ &=33333×(66666+33334) \\ &=33333×100000 \\ &=3333300000 \\ \end{aligned}$
$-3$
$解:原式=(1-2+3-4+5-6+7-8+9)+ \frac{1}{2}-\frac{5}{6}+\frac{1}{12}-\frac{19}{20}+\frac{1}{30}-\frac{41}{42}+\frac{1}{56}-\frac{71}{72}+\frac{1}{90})$
$=5+(\frac{1}{2}-1+\frac{1}{6}+\frac{1}{12}-1+\frac{1}{20}+\frac{1}{30}-1+\frac{1}{42}+\frac{1}{56}-1+\frac{1}{72}+\frac{1}{90})$
$=5-4+(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10})$
$=1+(1-\frac{1}{10})$
$=1+\frac{9}{10}$
$=\frac{19}{10}$
$解:设S=1+\frac{1}{2}+\frac{1}{2²}+\frac{1}{2³}+...+\frac{1}{2^{2024}},$
$则\frac{1}{2}S= \frac{1}{2}+\frac{1}{2²}+\frac{1}{2³}+\frac{1}{2^{4}}+...+\frac{1}{2^{2025}}$
$两式相减,得\frac{1}{2}S=1-\frac{1}{2^{2025}},$
$所以S=2-\frac{1}{2^{2024}},$
$所以原式=2-\frac{1}{2^{2024}}$
$解:S=-2²-2³-… -2^{18}-2^{19}$
$则2S=-2³-2^{4}-… -2^{19}-2^{20}$
$两式相减得:S=-2^{20}+4$
$所以2-2²-2³-2^{4}-… -2^{18}-2^{19}+2^{20}$
$=2+S+2^{20}$
$=2-2^{20}+4+2^{20}$
$=6$