解:$(1)$当$m=2$,$n=1$时,$(m+n)²=(2+1)²=9$,$\mathrm {m^2}+2mn+n^2=2²+2×2×1+1²=9$
$(2)(m+n)²=m²+2mn+n²$
$(3)$当$m=4$,$n=-2$时,$(m+n)²=[4+(-2)]²= 2²=4$,
$m²+2mn+n^2=4²+2×4×(-2)+(-2)²=16+(-16)+4=4$,
∴$(m+n)²=m²+2mn+n^2$仍成立
$(4)$根据$(2)$中的结论$\mathrm {m^2}+2mn+n^2=(m+n)²$知
当$m=0.125$,$n=0.875$时,$m²+2mn+n^2=(m+n)²=(0.125+0.875)²=1$