解:$(1)$∵$C$为线段$AB$的中点,且$AB=10\ \mathrm {cm}$
∴$AC=BC=\frac {1}{2}AB=\frac {1}{2}×10=5(\mathrm {cm})$
∵$M$为线段$AC$的中点,$N$为线段$BC$的中点
∴$MC=\frac {1}{2}AC=\frac {5}{2}(\mathrm {cm})$,$NC=\frac {1}{2}BC=\frac {5}{2}(\mathrm {cm})$
∴$MN=MC+NC=5(\mathrm {cm})$
$(2)$∵$AC∶BC=3∶2$,且$AB=a$
∴$AC=\frac {3}{5}AB=\frac {3}{5}a$,$BC=\frac {2}{5}AB=\frac {2}{5}a$
∵$M$为线段$AC$的中点,$N$为线段$BC$的中点
∴$MC=\frac {1}{2}AC=\frac {3}{10}a$,$NC=\frac {1}{2}BC=\frac {1}{5}a$
∴$MN=MC+NC=\frac {3}{10}a+\frac {1}{5}a=\frac {1}{2}a$