$证明: \because C A=C D,\therefore \angle D=\angle C A D .$
$\because \angle D=\angle C F A,\therefore \angle C A D=∠CEA$
$∵∠CEA=\angle B+\angle E C B,\therefore \angle C A E+\angle E A D=\angle B+\angle E C B .$
$\because C A=C B,\therefore \angle C A E=\angle B .$
$\therefore \angle E A D=\angle E C B .$
$\because \angle E A D=\angle E C D,$
$\therefore \angle E C B=\angle E C D .$
$\therefore C E 平分 \angle B C D$