$ 证明:\because 点E是\triangle ABC的内心,$
$ \therefore AE平分\angle BAC,BE平分\angle ABC,$
$ \therefore \angle BAD=\angle CAD,\angle ABE=\angle CBE,$
$ 又\because \angle CAD与\angle CBD所对弧为\widehat {DC},$
$ \therefore \angle CAD=\angle CBD=\angle BAD.$
$ \therefore \angle BED=\angle ABE+\angle BAD,\angle DBE=\angle CBE+\angle CBD,$
$ 即\angle BED=\angle DBE,故DB=DE.$