$解:原式=a(a-\frac {1}{a})(a+\frac{1}{a})(a^{2}+\frac{1}{a^{2}})(a^{4}+\frac{1}{a^{4}})×(a^{8}+\frac{1}{a^{8}})$
$=a(a^{2}-\frac{1}{a^{2}})(a^{2}+\frac{1}{a^{2}})(a^{4}+\frac{1}{a^{4}})(a^{8}+\frac{1}{a^{8}})$
$=a(a^{4}-\frac{1}{a^{4}})(a^{4}+\frac{1}{a^{4}})(a^{8}+\frac{1}{a^{8}})=a(a^{8}-\frac{1}{a^{8}})(a^{8}+\frac{1}{a^{8}})$
$=a(a^{16}-\frac{1}{a^{16}}) =a^{17}-\frac{1}{a^{15}}$