解:原式$ = (-\frac {2023}{2024}) × (-\frac {2022}{2023}) × (-\frac {2021}{2022}) ×(-\frac {2020}{2021})×··· × (-\frac {2}{3}) × (-\frac {1}{2})$
$=-\frac {2023}{2024}× \frac {2022}{2023} ×\frac {2021}{2022}×\frac {2020}{2021}×···×\frac {2}{3}×\frac {1}{2}$
$=-\frac {1}{2024}$