电子课本网 第47页

第47页

信息发布者:
$解:设​S=-1-2-3-4-···-199-200①​,$
$则​S=-200-199-198-197-···-2-1②.​$
$由①+②,得​2S=-201×200​,$
$​ ​即​2S=-40200​,$
$所以​S=-20100​,$
$即​-1-2-3-4-···-199-200=-20100​$
解:令​$S=1+5+5^2+5^3+...+5^{217}+5^{218}①$​,
则​$5S=5+5^2+5^3+5^4+···+5^{218}+5^{219}②.$​
由②-①,得​$5S-S=5^{219}-1$​,
所以​$S=\frac {5^{219}-1}{4}$​,
即​$1+5+5^2+5^3+···+5^{217}+5^{218}=\frac {5^{219}-1}{4}$​
$解:设​S=1+\frac {1}{2}+\frac {1}{2^2}+\frac {1}{2^3}+···+\frac {1}{2^{2025}}①​,$
$则​\frac {1}{2}S=\frac {1}{2}+\frac {1}{2^2}+\frac {1}{2^3}+\frac {1}{2^4}+···+\frac {1}{2^{2026}}②.​$
$由①-②,得​\frac {1}{2}S=1-\frac {1}{2^{2026}}​,$
$所以​S=2-\frac {1}{2^{2025}}​,即​1+\frac {1}{2}+\frac {1}{2^2}+\frac {1}{2^3}+...+\frac {1}{2^{2025}}=2-\frac {1}{2^{2025}}​$
$解:​(1)​原式​=\frac {1}{4}× (\frac {1}{3}-\frac {1}{7})+\frac {1}{4}× (\frac {1}{7}-\frac {1}{11})+\frac {1}{4} ×(\frac {1}{11}-\frac {1}{15})+···+\frac {1}{4}×(\frac {1}{55}-\frac {1}{59})​$
$​=\frac {1}{4}×(\frac {1}{3}-\frac {1}{7}+\frac {1}{7}-\frac {1}{11}+\frac {1}{11}-\frac {1}{15}+···+ \frac {1}{55}-\frac {1}{59})​$
$​=\frac {1}{4}×(\frac {1}{3}-\frac {1}{59})​$
$​=\frac {14}{177}​$
$​(2)​原式​=-\frac {1}{1×3}-\frac {1}{3×5}-\frac {1}{5×7}-\frac {1}{7×9}-\frac {1}{9×11}-\frac {1}{11×13}​$
$​=-\frac {1}{2}×(1-\frac {1}{3})-\frac {1}{2}×(\frac {1}{3}-\frac {1}{5})-\frac {1}{2}× (\frac {1}{5}-\frac {1}{7})-\frac {1}{2}×(\frac {1}{7}-\frac {1}{9})-\frac {1}{2}×(\frac {1}{9}-\frac {1}{11})-\frac {1}{2}×(\frac {1}{11}-\frac {1}{13})​$
$​=-\frac {1}{2}×(1-\frac {1}{3}+\frac {1}{3}-\frac {1}{5}+\frac {1}{5}-\frac {1}{7}+\frac {1}{7}-\frac {1}{9}+\frac {1}{9}-\frac {1}{11}+\frac {1}{11}-\frac {1}{13})​$
$​=-\frac {1}{2}×(1-\frac {1}{13})​$
$​=-\frac {6}{13}​$