$解:∵ AB为⊙O的直径∴ ∠ACB=∠ADB=90°$
$在Rt△ABC中,∵ AC=6cm,AB=10cm$
$∴ BC={\sqrt {{AB}^{2}-{AC}^{2}}}=8cm$
$∵ CD平分∠ACB∴ ∠ACD=∠BCD$
$∴ {\widehat{AD}}={\widehat{BD}}∴ AD=BD$
$在Rt△ABD中,∵ AD=BD$
$∴ AB={\sqrt {{AD}^{2}+{BD}^{2}}}={\sqrt {2}}AD$
$∵ AB=10cm$
$∴ AD=BD=5\sqrt {2}cm$