$解:\left( 2 \right) 分两种情况∶$
$①点P在∠AOB内,连接PE,PC,CP的延$
$长线 与直线OF交于点N, $
$过点P\text{作}PM⊥EF,垂足为点M,$
$如图1\ $
$∵EF=4\sqrt{2}\,\,\text{cm},PM⊥EF\ $
$∴EM=\frac{1}{2}EF=2\sqrt{2}\,\,\text{cm}\ $
$在Rt△EPM中,$
$∵PE=3\,\,\text{cm},EM=2\sqrt{2}\,\,\text{cm}\ $
$∴PM=\sqrt{PE^2-EM^2}=1\,\,\text{cm}\ $
$∵∠AOB=60°,∠OCP=90°\ $
$∴∠ONC=30°\ $
$在Rt△MNP中,$
$∵∠ONC=30°,PM=1\,\,\text{cm}\ $
$∴PN=2PM=2\,\,\text{cm}\ $
$∵\odot O的半径为3\,\,\text{cm}\ $
$∴CN=CP+PN=3\,\,\text{cm}+2\,\,\text{cm}=5\,\,\text{cm}$
$\ 在Rt△OCN中,$
$∵∠ONC=30°,\ CN=5\,\,\text{cm}\ $
$∴OC=\frac{CN}{\sqrt{3}}=\frac{5\sqrt{3}}{3}\,\,\text{cm}\ $
$②点P在∠AOB外,$
$连接PF,PC\text{,}PC与EF交于点N,\ $
$过点P作PM⊥EF,垂足为点M,如图2$

$\ $
$由①可知,$
$PM=1\,\,\text{cm},∠PNM=30°,$
$PN=2\,\,\text{cm}\ $
$∵PC=3\,\,\text{cm}\ $
$∴CN=PC-PN=1\,\,\text{cm}\ $
$在Rt△OCN中,$
$∵∠ONC=30°,CN=1\,\,\text{cm}\ $
$∴OC=\frac{CN}{\sqrt{3}}=\frac{\sqrt{3}}{3}\,\,\text{cm}$
$\ 综上所述,OC的长为\frac{5\sqrt{3}}{3}\,\,\text{cm}或\frac{\sqrt{3}}{3}\ \text{cm}. $