电子课本网 第101页

第101页

信息发布者:
$ 解:(3)原式=x^{m-2}(x²-2x+2)$
$解:(4)原式=-ab(10b³c²+15a²b-c).$
$解:(1)由题意可得:12÷3=4,k=-(3+4)=-7$
$(2)由题意可得:(x-3)和(x-4)是多项式x^3+mx^2+12x+n的两个因式,$
$∴x=3和x=4时,x^3+mx^2+12x+n=0,$
$∴\begin{cases}{27+9m+36+n=0}\\{64+16m+48+n=0}\end{cases}$
$解得m=-7,n=0.$
$(3)∵m=-7,n=0,$
$∴ x³+mx²+12x+n可化为x³-7x²+12x,$
$∴x³-7x²+12x=x(x²-7x+12)=x(x-3)(x-4).$
D
$a-b$
$a+b$
$a+b$
$a-b$
$(x-2y)(x+2y)$
$(x-5)²$
$3(x-1)(x+1).$
$3(x+3)(x-3).$
$解:将x^{2}+xy=99提取公因式x得x(x+y)=99$
$由于99可分为9*11,3*33 $
$根据题意两个都是小孩则舍去3*33,则\begin{cases}x=9\\x+y=11\\\end{cases}$
$解,得x=9,y=2$
$答:这两个孩子的年龄分别是9岁和2岁。 $