$解:(2)原式=\frac{1}{1×2}+\frac{1}{2×3}+...+\frac{1}{50×51}+\frac{1}{51×52}+\frac{1}{52×53}+\frac{1}{53×54}+…+\frac{1}{2021×2022}$
$-(\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+...+\frac{1}{50×51})\ $
$=\frac{2021}{2022}-\frac{50}{51}$
$=\frac{657}{34374}$
$(3)原式=\frac{1}{2}×(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2021}-\frac{1}{2023})=\frac{1}{2}×(1-\frac{1}{2023})$
$=\frac{1}{2}×\frac{2022}{2023}=\frac{1011}{2023}$
$(4)(更多请点击查看作业精灵详解)$