$解:(1)∵ 抛物线y=a(x+1)²-3与y轴交于点C(0,-\frac{8}{3}),$
$∴-\frac{8}{3}=a-3,解得a=\frac{1}{3}$
$∴抛物线对应的函数表达式为y=\frac{1}{3}(x+1)²-3.$
$令y=0,则\frac{1}{3}(x+1)²-3=0,解得x_{1}=2,x_{2}=-4.$
$∵点A在点B的左侧,$
$∴点A的坐标为(-4,0),点B的坐标为(2,0)$
$(2)根据题意,得D(-1,-3)、H(-1,0).\ $
$∵ A(-4,0)、B(2,0)、C(0,-\frac{8}{3}),$
$∴OA=4,OB=2,OC=\frac{8}{3},OH=1,DH=3.$
$∴AH=OA-OH=3.\ $
$∴S_{四边形ABCD}=S_{△ADH}+S_{梯形OCDH}+S_{△BOC}=\frac{1}{2}×3×3+\frac{1}{2}×(\frac{8}{3}+3)×1+\frac{1}{2}×2×\frac{8}{3}=10$