$证明:(1)∵AB=27m,AC=18m,CD=12m,∴\frac{AB}{AC}=\frac{27}{18}=\frac{3}{2}$
$\frac{AC}{CD}=\frac{18}{12}=\frac{3}{2}$
$∴\frac{AB}{AC}=\frac{AC}{CD}$
$∵AB//CD,∴∠BAC=∠ACD,∴△ABC∽△CAD$
$(2)由(1),可知△ABC∽△CAD, ∴\frac{S_{△ABC}}{S_{△CDA}}=(\frac{AB}{CA})^{2}=(\frac{3}{2})^{2}=\frac{9}{4}$
$∵△ACD的面积为80m^{2},∴△ABC的面积为80×\frac{9}{4}=180(m^{2})$
$∴水果园△ABC的面积为180m^{2}$