$解:(1)在Rt△ABC中,∵∠ABC=90°,cos∠BAC=\frac{AB}{AC}=\frac{3}{5},AB=9$
$∴ AC=15, ∴ BC= \sqrt{AC^{2}-AB^{2}}=12$
$在Rt△BCD中,∵∠BCD=90°,tan∠DBC=\frac{CD}{BC}=\frac{5}{12},∴CD=5$
$(2)∵∠ABC+∠BCD=180°,∴AB//CD,∴△CED∽△AEB$
$∴\frac{CE}{AE}=\frac{CD}{AB}=\frac{5}{9},∴\frac{CE}{CA}=\frac{5}{14}$
$过点E作EF⊥CB于点F,则EF//AB,∴△CEF∽△CAB$
$∴\frac{CE}{CA}=\frac{EF}{AB}$
$∴\frac{5}{14}=\frac{EF}{9},∴EF=\frac{45}{14}$
$∴S_{△BCE}=\frac{1}{2}BC×EF=\frac{1}{2}×12×\frac{45}{14}=\frac{135}{7}$