$解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD$
$∴\frac{BC}{BD}=\frac{BA}{BC}$
$∵AB=4 \sqrt{2},D为AB的中点,∴BD=AD=2\sqrt{2}$
$∴BC^{2}=16,∴BC=4$
$(2)过点A作AE⊥CD于点E,连接CO并延长,交⊙O于点F,连接AF$
$∵ 在Rt△AED中,cos∠ADC=\frac{DE}{AD}=\frac{\sqrt{2}}{4},AD=2\sqrt{2},∴ DE=1$
$∴AE=\sqrt{AD^{2}-DE^{2}}= \sqrt{7}$
$∵△BAC∽△BCD,∴ \frac{AC}{CD}=\frac{AB}{CB}=\sqrt{2}$
$设CD=x,则AC=\sqrt{2}x,CE=x-1$
$∵在Rt△ACE中,AC^{2}=CE^{2}+AE^{2},∴ (\sqrt{2}x)^{2}=(x-1)^{2}+(\sqrt{7})^{2}$
$解得x_{1}=2,x_{2}=-4(不合题意,舍去),∴CD=2,AC=2\sqrt{2}$
$∵ ∠AFC与∠ADC都是{\widehat{AC}}所对的圆周角,∴∠AFC=∠ADC$
$∵ CF为⊙O的直径,∴∠CAF=90°,∴sin∠AFC=\frac{AC}{CF}=sin∠ADC=\frac{AE}{AD}=\frac{\sqrt{14}}{4}$
$∴CF=\frac{8\sqrt{7}}{7},即⊙O的半径为\frac{4\sqrt{7}}{7}$