电子课本网 第69页

第69页

信息发布者:


$解:(1)∵DE⊥BC,sin∠BCD=\frac{3}{5},∴\frac{DE}{CD}=\frac{3}{5}$
$∵CD=5,∴DE=3,∴CE=\sqrt{CD^{2}-DE^{2}}=4$
$∵∠B=45°,∴易得BE=DE=3,∴BC=BE+CE=7$
$(2)过点A作AF⊥BC于点F$
$∵DE⊥BC,∴DE//AF$
$∵CD是AB的中线,∴D是AB的中点,∴易得DE是△ABF的中位线$
$∴AF=2DE=6,BF=2BE=6$
$∴CF=BC-BF=1$
$∴tan∠ACB=\frac{AF}{CF}=6$

$解:取BC的中点E,连接DE$
$∵D为AB的中点,∴ DE为△ABC的中位线$
$∴ AC=2DE,DE//AC$
$∵ DC⊥AC,∴DC⊥DE,即∠CDE=90°$
$∵∠BCD=30°,∴在Rt△CDE中,DC=\sqrt{3}DE$
$设DE=k(k>0),则DC=\sqrt{3}k,AC=2k$
$∴在Rt△ACD中,AD=\sqrt{AC^{2}+DC^{2}}=\sqrt{7}k$
$∴sin∠CDA=\frac{AC}{AD}=\frac{2k}{\sqrt {7}k}=\frac{2\sqrt{7}}{7}$
$cos∠CDA=\frac{DC}{AD}=\frac{\sqrt{3}k}{\sqrt {7}k}=\frac{\sqrt{21}}{7}$
$tan∠CDA=\frac{AC}{DC}=\frac {2\sqrt {3}}{3}$

$解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD$
$∴\frac{BC}{BD}=\frac{BA}{BC}$
$∵AB=4 \sqrt{2},D为AB的中点,∴BD=AD=2\sqrt{2}$
$∴BC^{2}=16,∴BC=4$
$(2)过点A作AE⊥CD于点E,连接CO并延长,交⊙O于点F,连接AF$
$∵ 在Rt△AED中,cos∠ADC=\frac{DE}{AD}=\frac{\sqrt{2}}{4},AD=2\sqrt{2},∴ DE=1$
$∴AE=\sqrt{AD^{2}-DE^{2}}= \sqrt{7}$
$∵△BAC∽△BCD,∴ \frac{AC}{CD}=\frac{AB}{CB}=\sqrt{2}$
$设CD=x,则AC=\sqrt{2}x,CE=x-1$
$∵在Rt△ACE中,AC^{2}=CE^{2}+AE^{2},∴ (\sqrt{2}x)^{2}=(x-1)^{2}+(\sqrt{7})^{2}$
$解得x_{1}=2,x_{2}=-4(不合题意,舍去),∴CD=2,AC=2\sqrt{2}$
$∵ ∠AFC与∠ADC都是{\widehat{AC}}所对的圆周角,∴∠AFC=∠ADC$
$∵ CF为⊙O的直径,∴∠CAF=90°,∴sin∠AFC=\frac{AC}{CF}=sin∠ADC=\frac{AE}{AD}=\frac{\sqrt{14}}{4}$
$∴CF=\frac{8\sqrt{7}}{7},即⊙O的半径为\frac{4\sqrt{7}}{7}$