$解:(1)过点D作DF⊥BC于点F$
$∵AE⊥BC,∴DF//AE,∴△CDF∽△CAE,∴\frac{DF}{AE}=\frac{CD}{CA}$
$∵CD=2AD,CD+AD=CA,∴\frac{CD}{CA}=\frac{2}{3}$
$∵AE=9,∴\frac{DF}{9}=\frac{2}{3},解得DF=6$
$∵sin∠CBD=\frac{3}{4}=\frac{DF}{BD},∴BD=8$
$(2)∵BD=CD,DF⊥BC,∴BF=CF$
$由(1),知DF=6,BD=8,∠DFB=90°,∴BF=CF=\sqrt{BD^{2}-DF^{2}}=2\sqrt{7}$
$∵DF//AE,CD=2AD,∴ CF=2EF,∴ EF= \sqrt{7},∴ BE=BF-EF= \sqrt{7}$
$∴tan∠BAE=\frac{BE}{AE}=\frac{\sqrt{7}}{9}$