$解:(2) ∵ CD//EF//AB,∴△CDF∽△ABF,△EFG∽△ABG$
$∴\frac{CD}{AB}=\frac{DF}{BF},\frac{EF}{AB}=\frac{GF}{GB}$
$又∵CD=EF,∴\frac{DF}{BF}=\frac{GF}{GB}$
$设BD长为a m$
$∵ DF=3m,FG=4m,∴\frac{3}{a+3}=\frac{4}{a+3+4},解得a=9$
$经检验,a=9是原分式方程的解且符合题意$
$∴ BD=9m,BF=9+3=12m$
$∴ AB=\frac{CD×BF}{DF}=\frac{1.6×12}{3}=6.4m$
$∴灯杆AB的高度为6.4m\ $