$解:由题意可得:\begin{cases}{c=-2 } \\ {\frac{3}{8}×8²+8b+c=-2} \end{cases}$
$解得b=-3,c=-2$
$所以y=\frac{3}{8}x²-3x-2=\frac{3}{8}(x-4)²-8$
$所以C(4,0)$
$所以CO=4$
$因为A(0,-2)$
$所以AO=2.$
$因为EF⊥AB,$
$所以∠AFE=∠AOC=90°.$
$设E(m, \frac {3}{8}m²-3m-2 )(0<x<8)$
$则F(m,-2),\ $
$所以EF=-\frac {3}{8}\ \mathrm {m}²+3m,AF=m。\ $
$若△AEF与△AOC相似,\ $
$则△AFE∽△AOC或△EFA∽△AOC.\ $
$①当△AFE∽△AOC时, \frac {AF}{AO} = \frac {EF}{CO} ,\ $
$所以 \frac {m}{2} = \frac {-\frac {3}{8}m²+3m}{4},\ $
$解得m_1=\frac {8}{3} ,m_2=0(不合题意,舍去),\ $
$所以E( \frac {8}{3} , \frac {22}{3} );\ $
$②当△EFA∽△AOC时, \frac {EF}{AO} = \frac {AF}{CO} ,$
$\ 所以\frac {-\frac {3}{8}m²+3m}{2}= \frac {m}{4} ,\ $
$解得m_3= \frac {20}{3} ,m_4=0(不合题意,舍去),\ $
$所以E ( \frac {20}{3} , -\frac {16}{3} ).\ $
$综上所述,存在点E,使得△AEF与△AOC相似,$
$点E的坐标为 ( \frac {8}{3},-\frac {22}{3} )或( \frac {20}{3},-\frac {16}{3} )$