$解:如图,延长ED交BC延长线于点F,$
$则∠CFD=90°,$
$∵tan∠DCF=i=\frac {1}{\sqrt{3}}=\frac {\sqrt{3}}{3},$
$∴∠DCF=30°,$
$∵CD=4m,$
$∴DF=\frac {1}{2}CD=2m,$
$CF=CDcos∠DCF=4×\frac {\sqrt{3}}{2}=2\sqrt{3}m,$
$∴BF=BC+CF=2\sqrt{3}+2\sqrt{3}=4\sqrt{3}m,$
$过点E作EG⊥AB于点G,$
$则GE=BF=4\sqrt{3}m,$
$GB=EF=ED+DF=1.5+2=3.5m,$
$又∵∠AED=37°,$
$∴AG=GEtan∠AEG=4\sqrt{3}·tan{37}°(\mathrm {m}),$
$则AB=AG+BG=4\sqrt{3}·tan{37}°+3.5$
$=3\sqrt{3}+3.5(\mathrm {m})≈8.7(\mathrm {m}),$
$故旗杆AB的高度为8.7m.$