$解:(2)①\because 将\triangle ACD沿AD所在直线折叠,$
$点C恰好落在边AB上的E点处, $
$\therefore \angle CAD=\angle BAD,CD=DE,$
$由(1)可知,\frac {AB}{AC}=\frac {BD}{CD}, $
$又\because AC=1,AB=2,$
$\therefore \frac {2}{1}=\frac {BD}{CD},$
$\therefore BD=2CD,$
$\because \angle BAC=90^{\circ},$
$\therefore BC=\sqrt{A{C}^2+B{C}^2}=\sqrt{{1}^2+{2}^2}=\sqrt{5},$
$\therefore BD+CD=\sqrt{5},$
$\therefore 3CD=\sqrt{5},$
$\therefore CD=\frac {\sqrt{5}}{3};$
$\therefore DE=\frac {\sqrt{5}}{3}.$
$②\because 将\triangle ACD沿AD所在直线折叠,$
$点C恰好落在边AB上的E点处,$
$\therefore \angle CAD=\angle BAD,CD=DE,\angle C=\angle AED=\alpha ,$
$\therefore \tan \angle C=\tan \alpha =\frac {AB}{AC},$
$由(1)可知,\frac {AB}{AC}=\frac {BD}{CD},$
$\therefore \tan \alpha =\frac {BD}{CD},$
$\therefore BD=CD\cdot \tan \alpha ,$
$又\because BC=BD+CD=m,$
$\therefore CD\cdot \tan \alpha +CD=m,$
$\therefore CD=\frac {m}{1+tanα},$
$\therefore DE=\frac {m}{1+tanα}.$