电子课本网 第13页

第13页

信息发布者:
C
B
2
93
36
$解:(1)原式=3\sqrt{6}+\frac {\sqrt{2}}2-\frac {\sqrt{2}}4+\sqrt{6}$
$=4\sqrt{6}+\frac {\sqrt{2}}4$
$解:(2)原式=10\sqrt{2x}-5\sqrt{2x}-6×\frac {\sqrt{2x}}2+\frac {3\sqrt{2x}}{2}$
$=10\sqrt{2x}-5\sqrt{2x}-3\sqrt{2x}+\frac {3\sqrt{2x}}2$
$=\frac {7\sqrt{2x}}2$
$解:x^2+4y^2-6x-4y+10=x^2-6x+9+4y^2-4y+1=(x-3)^2+(2y-1)^2$
$∴(x-3)^2+(2y-1)^2=0,则有x-3=0,2y-1=0$
$∴x=3,y=\frac 12$
$原式=\frac 23x×3\sqrt{x}+6x×\frac {\sqrt{xy}}x-y×\frac {\sqrt{xy}}y+x^2×\frac {\sqrt{x}}x=3x\sqrt{x}+5\sqrt{xy}$
$∴当x=3,y=\frac 12时,原式=9\sqrt{3}+5\sqrt{\frac 32}=9\sqrt{3}+\frac 52\sqrt{6}$
$解:∵x+y=-6,xy=4$
$∴x\lt 0,y\lt 0$
$∴\sqrt{\frac yx}+\sqrt{\frac xy}=\sqrt{\frac {-y}{-x}}+\sqrt{\frac {-x}{-y}}=\frac {\sqrt{xy}}{-x}+\frac {\sqrt{xy}}{-y}=-\frac {\sqrt{xy}(x+y)}{xy}$
$将x+y=-6,xy=4代入得$
$原式=-\frac {\sqrt{4}×(-6)}4=3$