$解:x^2+4y^2-6x-4y+10=x^2-6x+9+4y^2-4y+1=(x-3)^2+(2y-1)^2$
$∴(x-3)^2+(2y-1)^2=0,则有x-3=0,2y-1=0$
$∴x=3,y=\frac 12$
$原式=\frac 23x×3\sqrt{x}+6x×\frac {\sqrt{xy}}x-y×\frac {\sqrt{xy}}y+x^2×\frac {\sqrt{x}}x=3x\sqrt{x}+5\sqrt{xy}$
$∴当x=3,y=\frac 12时,原式=9\sqrt{3}+5\sqrt{\frac 32}=9\sqrt{3}+\frac 52\sqrt{6}$