$解:(1)∵数轴上与\sqrt3、\sqrt5对应的点分别是A、B$
$∴AB=\sqrt5-\sqrt3$
$∵点B关于点A的对称点为C$
$∴AC=AB,即\sqrt3-x=\sqrt5-\sqrt3,解得x=2\sqrt3-\sqrt5$
$(2)由(1)得x=2\sqrt3-\sqrt5$
$∴x^2=(2\sqrt3-\sqrt5)^2=17-4\sqrt{15}$
$∴原式=(17+4\sqrt{15})×(17-4\sqrt{15})+(\sqrt5-2\sqrt3)×(2\sqrt3-\sqrt5)-2$
$=17^2-4^2×15-(2\sqrt3-\sqrt5)^2=17^2-4^2×15-(17-4\sqrt{15})-2=30+4\sqrt{15}$