$解:a=\sqrt{20}+3\sqrt{2}=2\sqrt{5}+3\sqrt{2},b=2\sqrt{5}-\sqrt{18}=2\sqrt{5}-3\sqrt{2}$
$∴ab=(2\sqrt{5}+3\sqrt{2})(2\sqrt{5}-3\sqrt{2})=(2\sqrt{5})^2-(3\sqrt{2})^2=20-18=2$
$a+b=2\sqrt{5}+3\sqrt{2}+2\sqrt{5}-3\sqrt{2}=4\sqrt{5}$
$∴a^2-ab+b^2=(a+b)^2-3ab=(4\sqrt{5})^2-3×2=74$