$解:x=\frac 1{\sqrt{5}-\sqrt{3}}=\frac {\sqrt{5}+\sqrt{3}}2,y=\frac 1{\sqrt{5}+\sqrt{3}}=\frac {\sqrt{5}-\sqrt{3}}2$
$∴x+y=\sqrt{5},xy=\frac 12$
$(1)原式=(x+y)^2-3xy=5-\frac 32=\frac 72$
$(2)原式=\frac {x^2+y^2}{xy}=\frac {(x+y)^2-2xy}{xy}=\frac {5-1}{\frac 12}=8$