电子课本网 第32页

第32页

信息发布者:
$解:∵菱形ABCD的边长为\sqrt{(\frac {2\sqrt3+2}2)^2+(\frac {2\sqrt3-2}2)^2}=2\sqrt2$
$∴菱形ABCD的周长为2\sqrt2×4=8\sqrt2$
$面积为\frac 12×(2\sqrt3+2)×(2\sqrt3-2)=4$
$ 解:当n=1时,原式=\frac 1{\sqrt{5}}[(\frac {1+\sqrt{5}}2)^1-(\frac {1-\sqrt {5}}2)^1]$
                                     $ =\frac 1{\sqrt{5}}×[\frac {1+\sqrt{5}-1+\sqrt{5}}2]$
                                     $ =\frac 1{\sqrt{5}}×\sqrt{5}$
                                     $ =1$
$ ∴第1个数为1$
$ 当n=2时,原式=\frac 1{\sqrt{5}}[(\frac {1+\sqrt{5}}2)^2-(\frac {1-\sqrt {5}}2)^2$
                             $ =\frac 1{\sqrt{5}}×[\frac {1+2\sqrt{5}+5}4-\frac {1-2\sqrt{5}+5}4]$
                             $ =\frac 1{\sqrt{5}}×\frac {6+2\sqrt{5}-6+2\sqrt{5}}4$
                             $ =\frac 1{\sqrt{5}}×\sqrt{5}$
                             $=1$
$∴第2个数为1$
$(2)x_{n+1}-x_n=\frac 1{\sqrt {5}}[(\frac {1+\sqrt {5}}2)^{n+1}-(\frac {1-\sqrt {5}}2)^{n+1}]-\frac 1{\sqrt {5}}[(\frac {1+\sqrt {5}}2)^{n}-(\frac {1-\sqrt {5}}2)^{n}]$
$=\frac 1{\sqrt {5}}×[(\frac {1+\sqrt {5}}2)^{n+1}-(\frac {1+\sqrt {5}}2)^n-(\frac {1-\sqrt {5}}2)^{n+1}+(\frac {1-\sqrt {5}}2)^n]$
$=\frac 1{\sqrt {5}}×[(\frac {1+\sqrt {5}}2)^n×(\frac {1+\sqrt {5}}2-1)-(\frac {1-\sqrt {5}}2)^n×(\frac {1-\sqrt {5}}2-1)]$
$=\frac 1{\sqrt {5}}×[(\frac {1+\sqrt {5}}2)^{n-1}×\frac {1+\sqrt {5}}2×\frac {\sqrt {5}-1}2-(\frac {1-\sqrt {5}}2)^{n-1}×\frac {1-\sqrt {5}}2×\frac {-1-\sqrt {5}}2]$
$=\frac 1{\sqrt {5}}×[(\frac {1+\sqrt {5}}2)^{n-1}-(\frac {1-\sqrt {5}}2)^{n-1}]$
$=x_{n-1}$
$即x_{n+1}-x_n=x_{n-1}$