解:∵$a+b+c=10$,∴$a=10-(b+c)$,$b= 10-(a+c)$,$c=10-(a+b)$
∴原式$=\frac {10-(b+c)}{b+c}+\frac {10-(a+c)}{c+a}+\frac {10-(a+b)}{a+b}$
$=\frac {10}{b+c}-1+\frac {10}{c+a}- 1+\frac {10}{a+b}-1$
$= 10 · (\frac {1}{b+c}+\frac {1}{c+a}+\frac {1}{a+b})-3$
∵$\frac {1}{a+b}+\frac {1}{b+c}+\frac {1}{c+a}=\frac {43}{90}$
∴原式$=10×\frac {43}{90}-3=1\frac {7}{9}$