解:$(1)\frac {a-1}{a+1}=\frac {(a-1)(b+1)}{(a+1)(b+1)}$,$\frac {b-1}{b+1}=\frac {(b-1)(a+1)}{(a+1)(b+1)}$
$(2)$由$(1)$,得$\frac {a-1}{a+1}=\frac {(a-1)(b+1)}{(a+1)(b+1)}$,∴$\frac {a-1}{a+1}=\frac {ab+a-b-1}{ab+a+b+1}$
∵$ab=3$,$a+b=4$
∴$(a-b)²=(a+b)²-4ab=4²-4×3=4$,即$a-b= ±2$
当$a-b = 2 $时,$\frac {a-1}{a+1}=\frac {ab+a-b-1}{ab+a+b+1}=\frac {3+2-1}{3+4+1}=\frac {1}{2}$;
当$a-b=-2$时,$\frac {a-1}{a+1}=\frac {ab+a-b-1}{ab+a+b+1}=\frac {3-2-1}{3+4+1}=0$
综上,$\frac {a-1}{a+1}$的值为$\frac {1}{2}$或$0$