电子课本网 第83页

第83页

信息发布者:
​$4a²y$​,​$6ax²$​,​$3xy²$​
2x+3
6
0或4
解:​$(1)\frac {a-1}{a+1}=\frac {(a-1)(b+1)}{(a+1)(b+1)}$​,​$\frac {b-1}{b+1}=\frac {(b-1)(a+1)}{(a+1)(b+1)}$​
​$(2)$​由​$(1)$​,得​$\frac {a-1}{a+1}=\frac {(a-1)(b+1)}{(a+1)(b+1)}$​,∴​$\frac {a-1}{a+1}=\frac {ab+a-b-1}{ab+a+b+1}$​
∵​$ab=3$​,​$a+b=4$​
∴​$(a-b)²=(a+b)²-4ab=4²-4×3=4$​,即​$a-b= ±2$​
当​$a-b = 2 $​时,​$\frac {a-1}{a+1}=\frac {ab+a-b-1}{ab+a+b+1}=\frac {3+2-1}{3+4+1}=\frac {1}{2}$​;
当​$a-b=-2$​时,​$\frac {a-1}{a+1}=\frac {ab+a-b-1}{ab+a+b+1}=\frac {3-2-1}{3+4+1}=0$​
综上,​$\frac {a-1}{a+1}$​的值为​$\frac {1}{2}$​或​$0$​
A
​$3(2m-3)$​或​$3(2m+3)$​
或​$3(2m-3)(2m+3) $​
解:​$(1)$​∵​$\frac {a}{b}=\frac {c}{d}$​,∴​$\frac {a}{b}+1=\frac {c}{d}+1$​,即​$\frac {a+b}b=\frac {c+d}d$​
​$(2)$​∵​$a$​,​$b$​,​$c$​,​$d$​都不为​$0$​,∴可设​$\frac {a}{b}= \frac {c}{d}=k(k≠0)$​,即​$a=bk$​,​$c=dk$​
∴​$\frac {a+b}{a-b}=\frac {bk+b}{bk-b}=\frac {b(k+1)}{b(k-1)}=\frac {k+1}{k-1} $​,​$\frac {c+d}{c-d}=\frac {dk+d}{dk-d}=\frac {d(k+1)}{d(k-1)}=\frac {k+1}{k-1}$​
∴​$\frac {a+b}{a-b}=\frac {c+d}{c-d}$​