电子课本网 第85页

第85页

信息发布者:
D
C
​$-\frac {2}{m²-1}$​
1
​$=\frac {m+n}{m+n}+\frac {\mathrm {m^2}}{n^2-\mathrm {m^2}}$​
​$=1+\frac {\mathrm {m^2}}{n^2-\mathrm {m^2}}$​
​$=\frac {n^2}{n^2-\mathrm {m^2}}$​
​$=\frac {a^2+3}{(a+1)(a-1)}-\frac {(a+1)^2}{(a+1)(a-1)}+\frac {(a+1)(a-1)}{(a+1)(a-1)}$​
​$=\frac {(a-1)^2}{(a+1)(a-1)}$​
​$=\frac {a-1}{a+1}$​
解:∵​$\frac {A}{x-1} - \frac {B}{2-x} = \frac {A}{x-1} + \frac {B}{x-2} = \frac {A(x-2)+B(x-1)}{(x-1)(x-2)}= \frac {(A+B)x-2A-B}{(x-1)(x-2)}$​,
且​$\frac {A}{x-1}-\frac {B}{2-x}=\frac {2x-6}{(x-1)(x-2)}$​
∴​$A+B=2$​,​$2A+B=6$​,解得​$A=4$​,​$B=-2$​
则​$A$​,​$B$​的值分别是​$4$​,​$-2$​
M=N
解:由题意,得​$b-a=1$​,​$c-a=2$​,​$c-b=1$​
原式​$=\frac {a²+b²+c²-bc-ac-ab}{abc}=\frac { (b-a)²+(c-a)²+(c-b)² }{2abc}$​
又​$abc=6072$​,∴原式​$=\frac {1+4+1}{2×6072}=\frac {1}{2024}$​