电子课本网 第89页

第89页

信息发布者:
-2
​$\frac {2}{3}$​
​$=\frac {x+1+x-1}{(x-1)(x+1)} · \frac {(x-1)(x+1)}{x+2}$​
​$=\frac {2x}{x+2}$​
​$=\frac {(x+3)(x-3)}{(x+1)²}÷\frac {x²-x^2+x+3}{x+1}$​
​$=\frac {(x+3)(x-3)}{(x+1)²} · \frac {x+1}{x+3}$​
​$= \frac {x-3}{x+1} $​
解:原式​$=\frac {(a-3)²}{a-2}÷\frac {a^2-9}{a-2}=\frac {(a-3)²}{a-2} · \frac {a-2}{(a+3)(a-3)}= \frac {a-3}{a+3}$​
又​$\frac {a-1}{2}≤1$​,所以​$a≤3$​
又​$a $​为正整数,​$ $​且​$a-2≠0$​,​$a-3≠0$​,​$a+3≠0$​,所以​$a=1$​
则原式​$=\frac {1-3}{1+3}=-\frac {1}{2}$​
B
​$±\frac {1}{2} $​
解:​$t_{2}>t_{1}$​,理由如下:
由题意,得​$t_{1}=\frac {2s}{v}$​,​$t_{2}= \frac {s}{v+p}+\frac {s}{v-p}=\frac {2sv}{v²-p²}$​
∴​$\frac {t_{2}}{t_{1}}=\frac {2sv}{v²-p²}÷ \frac {2s}{v}= \frac {2sv}{v²-p²} · \frac {v}{2s} =\frac {v^2}{v²-p^2}$​
∵​$v>p>0$​,∴​$v²>v²-p²>0$​
∴​$\frac {v^2}{v²-p²}>1$​,即​$\frac {t_{2}}{t_{1}}> 1$​
∴​$t_{2}>t_{1}$​