解:由题意,得$\frac {x+y}{xy}=\frac {3}{2}$,$\frac {y+z}{yz}=\frac {3}{4}$,$\frac {x+z}{xz}=\frac {5}{4}$
∴$\frac {1}{y}+\frac {1}{x}=\frac {3}{2}$,$ \frac {1}{z}+\frac {1}{y}=\frac {3}{4}$,$ \frac {1}{z}+\frac {1}{x}=\frac {5}{4}$,即$\frac {1}{x}+\frac {1}{y}+\frac {1}{z}=\frac {7}{4}$
∵$\frac {xy+yz+xz}{xyz}=\frac {1}{z}+\frac {1}{x}+\frac {1}{y}=\frac {7}{4}$
∴$\frac {xyz}{xy+yz+xz}=\frac {4}{7}$