电子课本网 第144页

第144页

信息发布者:
4
​$7+4\sqrt {2}$​
​$=2\sqrt {3}-8\sqrt {3}+\sqrt {3}$​
​$=-5\sqrt {3}$​
​$=6\sqrt {3}+\frac {\sqrt {2}}{2}+\frac {3}{5}-4\sqrt {2}$​
​$=\frac {31\sqrt {3}}{5}-\frac {7\sqrt {2}}{2} $​
​$=2\sqrt {2}+3×\frac {\sqrt {3}}{3}-\frac {\sqrt 2}{2}+\frac {\sqrt 3}{2}$​
​$=\frac {3\sqrt 2}{2}+\frac {3\sqrt {3}}{2}$​
​$=4b · \frac {\sqrt {ab}}{b}+\frac {2}{a} · a \sqrt {ab}-3a · \frac {\sqrt {ab}}{a}- 3 \sqrt {ab}$​
​$=4 \sqrt {ab}+2 \sqrt {ab}-3 \sqrt {ab}-3 \sqrt {ab}$​
​$=0$​
解:原式​$=6 \sqrt {xy}+3 \sqrt {xy}-4 \sqrt {xy}-6 \sqrt {xy}= - \sqrt {xy}$​
当​$x=\frac {3}{2}$​,​$y=27$​时,原式​$=- \sqrt {\frac {3}{2}×27}=- \sqrt {\frac {81}{2}}=-\frac {9\sqrt {2}}{2}$​
D
-9≤m≤25
解:​$(1)\frac {\sqrt {5}-1}{2}-\frac {2}{\sqrt 5-1}= \frac {\sqrt {5}-1}{2}-\frac {\sqrt {5}+1}{2}=-1$​; 
​$ \frac {\sqrt {8}-2}{2}-\frac {2}{\sqrt 8-2}= \frac {\sqrt {8}-2}{2}-\frac {\sqrt {8}+2}{2}=-2$​; 
​$ \frac {\sqrt {13}-3}{2}-\frac {2}{\sqrt {13}-3}= \frac {\sqrt {13}-3}{2}-\frac {\sqrt {13}+3}{2}=-3$​; 
​$ \frac {\sqrt {20}-4}{2}-\frac {2}{\sqrt {20}-4}=\frac {\sqrt {20}-4}{2}-\frac {\sqrt {20}+4}{2}=-4$​
​$(2)$​第​$5$​个式子为​$\frac {\sqrt {29}-5}{2}-\frac {2}{\sqrt {29}-5}$​,其结果为​$-5$​
​$(3)$​第​$n$​个式子为​$\frac {\sqrt {n²+4}-n}{2}-\frac {2}{\sqrt {n^2+4}-n}$​,其结果为​$-n$​,证明如下:
​$\frac {\sqrt {n²+4}-n}{2}-\frac {2}{\sqrt {n^2+4}-n}=\frac {\sqrt {n²+4}-n}{2}-\frac {\sqrt {n^2+4}+n}2=-n$​