解:$(1)$由$v=\frac {s}{t}$可得,小雨从家到图书馆需要的时间$t_{小用}=\frac sv=\frac {3\ \mathrm {km}}{5\ \mathrm {km/h}}=0.6\ \mathrm {h}=36 \mathrm {\mathrm {min}}$
$(2)$设妈妈追上小雨的时间为$t,$则小雨走的路程$s_{1}=v(\frac {10}{60}\ \mathrm {h}+t) =v(\frac 16\ \mathrm {h}+t)($式$①),$小雨走的路程等于小雨妈妈走的路程,即$s_{1}=s_{2}=v't($式$②),$由式$①②$可得$v(\frac 16\ \mathrm {h}+t)=v't,$则$5\ \mathrm {km/h}×(\frac 16\ \mathrm {h}+t)=15\ \mathrm {km/h}×t,$解得$t=\frac 1{12}\ \mathrm {h}=5 \mathrm {\mathrm {min}}$
$(3)$小雨从家出发到掉头返回时行走的路程$s_{1}'=vt_{1}=5\ \mathrm {km/h}×\frac {10}{60}\ \mathrm {h}=\frac 56\ \mathrm {km}。$设从小雨返回到与妈妈相遇用时为$t_{2},$则$s_{1}'=(u+v')t_{2},$$\frac 56\ \mathrm {km}=(5\ \mathrm {km/h}+15\ \mathrm {km/h})t_{2},$解得$t_{2}=\frac 1{24}\ \mathrm {h}。$
此时距图书馆的距离$s'=s-v't_{2}=3\ \mathrm {km}-15\ \mathrm {km/h}×\frac 1{24}\ \mathrm {h}=2.375\ \mathrm {km}$