$解: (1)∵四边形AFPE是平行四边形$
$∴PF//CA$
$∴△BFP∽△BAC$
$∴\frac {S_{△BFP}}{S_{△ABC}}=(\frac {x}{2})²$
$∴S_{△ABC}=1$
$∴S_{△BFP}=\frac {x²}{4}$
$同理:S_{△PEC}=(\frac {2-x}{2})²$
$∴y=1-\frac {x²}{4}-\frac {4-4x+x²}{4}$
$∴y=-\frac {x²}{2}+x$
$(2)上述函数有最大值,最大值为\frac {1}{2};理由如下$
$y=-\frac {x²}{2}+x=-\frac {1}{2}(x-1)²+\frac {1}{2},-\frac {1}{2}\lt 0$
$∴y有最大值$
$∴当x=1时,y有最大值,最大值为\frac {1}{2}$