$解:设正方形的边长为2a,易得ED=a,CE=\sqrt{5}a$
$过点H作MN//AD,分别交AB,CD于点M,N$
$则△CNH∽△CDE$
$∴\frac {NH}{ED}=\frac {CH}{CE}$
$∵CH= 2a,ED=a,CE=\sqrt{5}a$
$∴NH=\frac {2\sqrt{5}}{5}a$
$∴MH= 2a-\frac {2\sqrt{5}}{5}a$
$由上述可得,∠HMG =∠CNH=∠CHG= 90°$
$得∠MHG=∠NCH,△HMG∽△CNH$
$∴△HMG∽△CDE$
$∴\frac {HG}{EC}=\frac {MH}{CD}$
$则HG=\frac {\sqrt{5}}{2}(2a-\frac {2\sqrt{5}}{5}a)=(\sqrt{5}-1)a$
$∴BG= HG=\frac {\sqrt{5}-1}{2}AB$
$∴点G 为AB的黄金分割点$