$解:B为线段AF的黄金分割点,C为线段DG的黄金分割点,$
$矩形AFGD和矩形CBFG都是黄金矩形,证明如下:$
$设正方形ABCD的边长为a,则AB=BC=a$
$∵点E是AB的中点$
$∴BE=\frac 12AB=\frac {a}2$
$在Rt△BCE中,∵BE=\frac {a}2,BC=a$
$∴CE=\sqrt {BE^2+BC^2}=\frac {\sqrt 5}2a$
$∴EF=\frac {\sqrt 5}2a,AF=\frac {\sqrt 5+1}2a,BF=\frac {\sqrt 5-1}2a$
$∴\frac {AB}{AF}=\frac a{\frac {\sqrt 5+1}2a}=\frac {\sqrt 5-1}2≈0.618$
$∴点B是线段AF的黄金分割点$
$∵\frac {DC}{DG}=\frac {AB}{AF}≈0.618$
$∴点C是线段DG的黄金分割点$
$∵\frac {AD}{AF}=\frac {AB}{AF}≈0.618,\frac {BF}{BC}=\frac {\frac {\sqrt 5-1}2a}{a}=\frac {\sqrt 5-1}2≈0.618$
$∴矩形AFGD和矩形CBFG都是黄金矩形$