电子课本网 第43页

第43页

信息发布者:
$解:​(1)△ABE∽△ECD​$
$∵​EC//AB​$
$∴​∠A=∠CED​$
$∵​EB//DC​$
$∴​∠AEB=∠EDC​$
$​(2)​∵​△ABE∽△ECD​$
$∴​\frac {S_{△ABE}}{S_{△ECD}}=(\frac {h_{1}}{h_{2}})^2=\frac 49​$
$∴​\frac {h_{1}}{h_{2}}=\frac 23​$
$∵​\frac {S_{△BCE}}{S_{△CDE}}=\frac {BE}{CD}=\frac {h_{1}}{h_{2}}=\frac 23,​​S_{△CDE}=9​$
$∴​S_{△BCE}=6​$
$解:图①中,设​DE=x\ \mathrm {cm},​则​DG=2x\ \mathrm {cm}​$
$∵四边形​DEFG ​是矩形$
$∴​DG//BC​$
$∴​△ADG∽△ABC​$
$∴​\frac {AM}{AH}=\frac {DG}{BC}​$
$∵​DG=2x\ \mathrm {cm},​​BC=12\ \mathrm {cm},​​AH=8\ \mathrm {cm}​$
$∴​\frac {AM}8=\frac {2x}{12}​$
$∴​AM=\frac 43x\ \mathrm {cm}​$
$∵​MH=DE=x\ \mathrm {cm}​$
$又∵​AM+MH=AH​$
$∴​\frac 43x+x=8​$
$解得​x=\frac {24}{7}​$
$∴​S_{矩形DEFG}=DE×DG=\frac {1152}{49}\ \mathrm {cm^2}​$
$图②中,设​DG=x\ \mathrm {cm},​则​DE=2x\ \mathrm {cm}​$
$同理可得,​△ADG∽△ABC​$
$∴​\frac {AM}{AH}=\frac {DG}{BC}​$
$∴​AM=\frac 23x\ \mathrm {cm}​$
$∵​MH=DE=2x\ \mathrm {cm},​​AM+MH=AH=8\ \mathrm {cm}​$
$∴​\frac 23x+2x=8​$
$解得​x=3​$
$∴​DG=3\ \mathrm {cm},​​DE=6\ \mathrm {cm}​$
$∴​S_{矩形DEFG}=DG×DE=18\ \mathrm {cm^2}​$
$∵​\frac {1152}{49}>18​$
∴图①的设计方案更好
$解:由题意得​AB=k_{AD},​​A'B'=kA'D'​$
$∵​BD=\sqrt {AB^2-AD^2}=\sqrt {k^2-1}AD,​​B'D'=\sqrt {A'B'^2-A'D'^2}=\sqrt {k^2-1}A'D'​$
$∴​\frac {BD}{B'D'}=\frac {AD}{A'D'}​$
$∵​∠ADB=∠A'D'B'=90°​$
$∴​△ABD∽△A'B'D'​$
$∴​∠ABD=∠A'B'D'​$
$∵​∠C=∠C'​$
$∴​△ABC∽△A'B'C'​$
$∴​\frac {AB}{A'B'}=\frac {AD}{A'D'}=\frac {BE}{B'E'}​$
$∴​AD · B'E'=A'D' · BE​$