电子课本网 第61页

第61页

信息发布者:
$解:​(1)①​由勾股定理可得​AB=\sqrt {AC^2+BC^2}=10​$
$∴​sin A=\frac {BC}{AB}=cosB=\frac {6}{10}=\frac {3}{5},​​cos A=\frac {AC}{AB}=sinB=\frac {8}{10}=\frac {4}{5}​$
$②由勾股定理可得​BC=\sqrt {AB^2-AC^2}=24​$
$∴​sin A=cos B=\frac {BC}{AB}=\frac {24}{25},​​cos A=sin B=\frac {AC}{AB}=\frac {7}{25}​$
$③由勾股定理可得​AB=\sqrt {AC^2+BC^2}=\sqrt {29}​$
$∴​sin A=cos B=\frac {BC}{AB}=\frac 5{\sqrt {29}}=\frac {5\sqrt {29}}{29},​​cos A=sin B=\frac {AC}{AB}=\frac 2{\sqrt {29}}=\frac {2\sqrt {29}}{29}​$
$​(2)​当​∠A+∠B=90°​时,​sin A=cos B,​​cosA=sinB$

$​\frac {4}{5} ​$
$​\frac {3}{5} ​$
$​\frac {3}{5} ​$
$​\frac {4}{5}​$
2.5 
$​\frac {3}{5} ​$
$​\frac {3}{4}​$
C
C
D
B