$解:过点A作AD⊥BC,垂足为点D$
$设PQ=a$
$∵PQ=a,∠B=30°,PQ⊥BC$
$∴PB=2a,BQ=\sqrt 3a$
$∵\frac {BP}{PA}=\frac 12$
$∴PA=4a,AB=PA+PB=6a$
$在Rt△ABD中,∵∠B=30°$
$∴AD=\frac 12AB=3a,BD=\sqrt 3AD=3\sqrt 3a$
$∴QD=BD-BQ=3\sqrt 3a-\sqrt 3a=2\sqrt 3a$
$在Rt△AQD中,∵AD=3a,QD=2\sqrt 3a$
$∴AQ=\sqrt {AD^2+QD^2}=\sqrt {21}a$
$∴cos∠AQC=\frac {QD}{AQ}=\frac {2\sqrt 3a}{\sqrt {21}a}=\frac {2\sqrt 7}7$