电子课本网 第122页

第122页

信息发布者:
$ 解:​(1) \frac {1}{3} ×100×101×102=343400 ​$
$​(2)​∵​1×2=\frac {1}{3} (1×2×3-0×1×2),​​2×3=\frac {1}{3} (2×3×4-1×2×3),​$
$​3×4=\frac {1}{3} (3×4×5-2×3×4),​···,​n(n+1)=\frac {1}{3} ([n(n+1)(n+2)-(n-1)n(n+1)]​$
$∴​1×2+2×3+···+n(n+1)​$
$​=\frac {1}{3} [1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-4×3×4+···+n(n+1)(n+2)-(n-1)n(n+1)]​$
$​=\frac {1}{3}\ \mathrm {n}(n+1)(n+2)​$
$​ (3)​根据​(2)​的计算方法,​1×2×3=\frac {1}{4} (1×2×3×4-0×1×2×3),​$
$​2×3×4=\frac {1}{4} (2×3×4×5-1×2×3×4),​···,$
$​n(n+1)(n+2)=\frac {1}{4} [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]​$
$∴​1×2×3+2×3×4+···+n(n+1)(n+2)​$
$​=\frac {1}{4} [1×2×3×4-0×1×2×3+2×3×4×5-1×2×3×4+···+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]​$
$​=\frac {1}{4}\ \mathrm {n}(n+1)(n+2)(n+3)​$