解:$(1)$∵$a+b=2\sqrt {ab}$
∴$(\sqrt a-\sqrt b)^2=0$
∴$\sqrt a=\sqrt b,$即$a=b$
∴原式$=\frac {\sqrt {4a-a}}{\sqrt {5a+7a}}=\sqrt {\frac 3{12}}=\frac 12 $
$(2)$∵$a+b+c=2\sqrt {a-2}+4\sqrt {b-1}+6\sqrt {c+3}-14$
∴$(a-2)-2\sqrt {a-2}+1+b-1-4\sqrt {b-1}+4+c+3-6\sqrt {c+3}+9=0$
∴$(\sqrt {a-2}-1)^2+(\sqrt {b-1}-2)^2+(\sqrt {c+3}-3)^2=0$
∴$\sqrt {a-2}-1=0,$$\sqrt {b-1}-2=0,$$\sqrt {c+3}-3=0$
∴$a=3,$$b=5,$$c=6$