电子课本网 第101页

第101页

信息发布者:
$解:原式​=\sqrt {(m-n)²}​$
$​=|m-n|​$
$​=m-n​$
$将​m=1+\sqrt {2},n=1-\sqrt {2}​代入$
$原式​=1+\sqrt {2}-(1-\sqrt {2})​$
$​=2\sqrt {2}​$

$解:因为​0<x<1​$
$所以​\frac {1}{x}>x​$
$原式​=\sqrt {x²+\frac {1}{x²}-2+4}-\sqrt {x²+\frac {1}{x²}+2-4}​$
$​=\sqrt {x²+\frac {1}{x²}+2}-\sqrt {x²+\frac {1}{x²}-2}​$
$​=\sqrt {(x+\frac {1}{x})²}-\sqrt {(x-\frac {1}{x})²}​$
$​=|x+\frac {1}{x}|-|x-\frac {1}{x}|​$
$​=x+\frac {1}{x}-(\frac {1}{x}-x)​$
$​=2x​$


$解:原式​=\sqrt {7×63}​$
$​ =\sqrt {21²}​$
$​ =21​$
$解:原式​=\sqrt {27×\frac {1}{3}}​$
$​ =\sqrt {9}​$
$​ =3​$
$解:原式​=\sqrt {7²}×\sqrt {5²}​$
$​=7×5​$
$​=35$
$解:原式​=\sqrt {21×14×2}​$
$​=\sqrt {3×14²}​$
$​=14\sqrt {3}​$