$解:(1)原式=(a+b)²-2ab=3²-2×\frac {5}{4}=9-\frac {5}{2}=\frac {13}{2}$
$(2)(a-b)²=a²+b²-2ab =\frac {13}{2}-2×\frac {5}{4}=4$
$所以原式=±2$
$(3)由a+b=3,得a=3-b,代入ab=\frac {5}{4}\ $
$得(3-b)b= \frac {5}{4},即-b²+3b=\frac {5}{4}$
$∴原式=2+2(-b²+3b) =2+2×\frac {5}{4}= \frac {9}{2}$