电子课本网 第8页

第8页

信息发布者:
$(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc$
30
$(2a+b)(a+b)$
$解:​(3)​示意图不唯一,如图所示$

$(4)(a_{1}+a_{2})^2=a_{1}^2+2a_{1}a_{2}+a_{2}^2,​共有​1+2=3(​项);​$
$(a_{1}+a_{2}+a_{3})^2=a_{1}^2+a_{2}^2+a_{3}^2+2a_{1}a_{2}+2a_{2}a_{3}+2a_{1}a_{3}​$
$共有​1+2+3=6(​项)$
$∴将代数式​(a_{1}+a_{2}+a_{3}+···+a_{20})^2$
$​展开、合并同类项后共有​1+2+3+···+20=\frac {(1+20)×20}{2}=210(​项)$
$解:(1)原式​=(a+b)²-2ab=3²-2×\frac {5}{4}=9-\frac {5}{2}=\frac {13}{2}$
$​(2)(a-b)²=a²+b²-2ab =\frac {13}{2}-2×\frac {5}{4}=4​$
$所以原式​=±2​$
$(3)由​a+b=3,​得​a=3-b,​代入​ab=\frac {5}{4}\ $
$​得​(3-b)b= \frac {5}{4},​即​-b²+3b=\frac {5}{4}​$
$∴原式​=2+2(-b²+3b) =2+2×\frac {5}{4}= \frac {9}{2}​$