解:$(1)$∵$\frac x{x^2+1}=\frac 14,$∴$\frac {x^2+1}x=4$
∴$\frac {x^2}{x}+\frac 1{x}=4,$∴$x+\frac 1{x}=4$
$(2)①$∵$\frac {x}{x^2-3x+1}=\frac 12,$∴$\frac {x^2-3x+1}{x}=2$
∴$x-3+\frac 1{x}=2,$∴$x+\frac 1{x}=5$
②∵$\frac {x^4+2x^2+1}{x^2}=x^2+2+\frac 1{x^2}=(x+\frac 1{x})^2=25$
∴$\frac {x^2}{x^4+2x^2+1}=\frac 1{25}$