电子课本网 第115页

第115页

信息发布者:
$解:原式​=\frac {\sqrt {3}}{2}​$
$解:原式​=\frac {3}{x}​$
$解:原式​=\frac {4b²}{a}​$
$解:原式​=\frac {2\sqrt {2}}{3}​$
$解:原式​=\sqrt {\frac {25}{9}}​$
$​ =\frac {5}{3}​$
$解:原式​=\frac {7×2}{9}​$
$​ =\frac {14}{9}​$
$解:原式​=\frac {x\sqrt {x}}{5y²}​$
$解:原式​=-\sqrt {\frac {54}{3}}​$
$​ =-\sqrt {18}​$
$​ =-3\sqrt {2}​$
解:原式​$=-\frac {1}{3}\sqrt {\frac {2}{98}}$​
​$ =-\frac {1}{3}×\frac {1}{7}$​
​$ =-\frac {1}{21}$​
$解:原式​=\sqrt {\frac {16}{5}÷\frac {8}{5}}​$
$​ =\sqrt {2}​$
解:原式​$=\frac {1}{2}×\sqrt {6ab÷3a}$​
​$ =\frac {1}{2}\sqrt {2b}$​
$​\sqrt {\frac {125}{26}}​$
$​5\sqrt {\frac {5}{26}}​$
$​5\sqrt {\frac {5}{26}}​$
$解:​(2)\sqrt {n-\frac {n}{n^2+1}}=n\sqrt {\frac {n}{n^2+1}}​$
$证明:​\sqrt {n-\frac {n}{n^2+1}}=\sqrt {\frac {n(n^2+1)-n}{n^2+1}}=\sqrt {\frac {n^3+n-n}{n^2+1}}​$
$​=\sqrt {\frac {n^3}{n^2+1}}=n \sqrt {\frac {n}{n^2+1}}​$
解:设下底长为​$x$​
​$(2+x)×\sqrt {2}×\frac {1}{2}=\sqrt {50}$​
​$ x=8$​
∴梯形的下底长为​$8$