$解:菱形的边长为\sqrt {96}÷4=\sqrt {6}(\mathrm {cm})$
$∵∠DAB = 120°$
$∴∠DAO= 60°$
$∴OA=\frac {\sqrt {6}}{2}\mathrm {cm},OD=\frac {3\sqrt {2}}{2}\mathrm {cm}$
$∴AC=\sqrt {6}(\mathrm {cm}),BD = 3\sqrt {2}(\mathrm {cm})$
$∴S=\frac {1}{2}×AC×BD=3\sqrt {3}(\mathrm {cm}²)$