电子课本网 第124页

第124页

信息发布者:
A
$解:原式​=\sqrt {40×10}​$
$​ =\sqrt {400}​$
$​ =20​$
$解:原式​=\sqrt {50÷2}​$
$​ =\sqrt {25}​$
$​ =5​$
$解:原式​=\sqrt {2}+2\sqrt {2}-6\sqrt {2}​$
$​ =-3\sqrt {2}​$
$解:原式​=3-2\sqrt {11}+3\sqrt {11}-22​$
$​ =\sqrt {11}-19​$
$解:原式​=(\sqrt {2})²-(\sqrt {5})²​$
$​ =2-5​$
$​ =-3​$
$解:原式​=3-2\sqrt {6}+2​$
$​ =5-2\sqrt {6}​$
$解:原式​=8\sqrt {3}×\frac {\sqrt {2}}{2}÷5\sqrt {3}​$
$​ =4\sqrt {6}×\frac {\sqrt {3}}{15}​$
$​ =\frac {4\sqrt {2}}{5}​$
$解:原式​=14a\sqrt {2a}-4a²×\frac {1}{2\sqrt {2a}}+7a\sqrt {2a}​$
$​ =14a\sqrt {2a}-a\sqrt {2a}+7a\sqrt {2a}​$
$​ =20a\sqrt {2a}​$
$解:将​a=2,​​b=-8,​​c=5​代入得:$
$原式​=\frac {-8+\sqrt {64-4×2×5}}{2×2}=\frac {8+2\sqrt {6}}{4} =2+\frac {\sqrt {6}}{2}​$
$解:原式​=a²+2ab+b²+(2a²+ab-2ab-b²)-3a²=ab​$
$将​a=2+\sqrt {3},​​b=2-\sqrt {3}​代入原式得:$
$原式​=(2+\sqrt {3})(2-\sqrt {3}) =4-3 =1​$
$解:菱形的边长为​\sqrt {96}÷4=\sqrt {6}(\mathrm {cm})​$
$∵​∠DAB = 120°​$
$∴​∠DAO= 60°​$
$∴​OA=\frac {\sqrt {6}}{2}\mathrm {cm},​​OD=\frac {3\sqrt {2}}{2}\mathrm {cm}​$
$∴​AC=\sqrt {6}(\mathrm {cm}),​​BD = 3\sqrt {2}(\mathrm {cm})​$
$∴​S=\frac {1}{2}×AC×BD=3\sqrt {3}(\mathrm {cm}²)​$
$解:∵​(a+\frac {1}{a})²=a²+2+\frac {1}{a²}=10​$
$∴​a²+\frac {1}{a²}=8​$
$​(a-\frac {1}{a})²=a²-2+\frac {1}{a²}=6​$
$∴​a-\frac {1}{a}=±\sqrt {6}​$