$\sqrt{11},\sqrt[{3}]{−16},− \sqrt{27},−\frac{π}{2},3+ \sqrt{29},\frac{\sqrt{2}}{2}$
$−3,\sqrt[{3}]{−16},− \sqrt{27},−\frac{π}{2}$
$解:(1)∵ \sqrt{16}< \sqrt{17}< \sqrt{25},$ $∴4< \sqrt{17}<5.$ $∴1< \sqrt{17}-3<2.$ $∴a=1,b= \sqrt{17}−4$ $(2)(−a)³+(b+4)²=(−1)²+( \sqrt{17}−4+4)²=−1+17=16.$ $∴ (-a)³+(b+4)²的平方根是±4$
$解:A:−π,E:−\sqrt{5},B:−1.5,D:0.4,F:\sqrt{3},C: \sqrt{10}$ $\sqrt{10}>\sqrt{3}>0.4>−1.5>−\sqrt{5}>−π$
|
|