解:$(1)$当$x=\frac {3-\sqrt 2}2,$$y=\frac {1+\sqrt 2}2$时
$ $原式$=(x+y)(x-y)= (\frac {3-\sqrt 2}2+\frac {1+\sqrt 2}2)×(\frac {3-\sqrt 2}2-\frac {1+\sqrt 2}2)$
$=2×(1-\sqrt {(2})=2-2\sqrt 2$
$(2)$当$x=\frac {3-\sqrt 2}2,$$y=\frac {1+\sqrt 2}2$时,
原式$=(x-y)^2=(\frac {3-\sqrt 2}2-\frac {1+\sqrt 2}2)^2=(1-\sqrt 2)^2=1-2\sqrt 2+2=3-2\sqrt 2$