电子课本网 第61页

第61页

信息发布者:
C
$=\frac {a-b}{a-b}​$
$​=1$
$​=\frac {b(a+b)-ab}{(a+b)(a-b)}​$
$​ =\frac {b^2}{a^2-b^2}​$
$​=\frac {(a+2)(2-a)-4}{2-a}​$
$​ =\frac {a^2}{a-2}​$
$解:​(1)n ·\frac n{n+1}=n-\frac {n}{n+1}​$
$​ (2)​右边​=\frac {n(n+1)-n}{n+1}=\frac {n^2+n-n}{n+1}=\frac {n^2}{n+1}=n ·\frac n{n+1}=​左边$
∴等式正确

A
$\frac {5}{3}$
2
-1
$​ =\frac {2x-3}{x^3}​$
$​=\frac {a^2-b^2}{(a-b)^2}​$
$​=\frac {a+b}{a-b}$
$=\frac {2(x+3)+(1-x)(x-3)-6×2}{2(x+3)(x-3)}​$
$​=\frac {2x+6+x-3-x^2+3x-12}{2(x+3)(x-3)}​$
$​=\frac {-x^2+6x-9}{2(x+3)(x-3)}​$
$​=-\frac {x-3}{2x+6}$
$​=\frac {1-x+1+x}{1-x^2}+\frac 2{1+x^2}+\frac 4{1+x^4}​$
$​ =\frac {2(1+x^2)+2(1-x^2)}{1-x^4}+\frac 4{1+x^4}​$
$​ =\frac {4(1+x^4)+4(1-x^4)}{1-x^8}​$
$​ =\frac 8{1-x^8}​$