首 页
电子课本网
›
第94页
第94页
信息发布者:
B
$解:1+3x≥0,则x≥-\frac 13$
$ ∴式子有意义的x的范围为x≥-\frac 13 $
$解:x^2+7>0对任意的x都成立$
$∴式子有意义的x的范围为任意实数$
$解:x-2>0,则x>2$
$∴式子有意义的x的范围为x>2$
$ 解:原式=\frac{1}{3}$
$ 解:原式=5x²+1$
$解:原式=7^2×\frac 57$
$ =35$
$解:原式=\frac 13×6m$
$ =2m$
$解:原式=4x^2×4y$
$=16x^2y$
$解:(1)x≥0且x-1≠0,则x≥0且x≠1 $
$ (2)-(x+2)^2≥0,则x=-2 $
$ (3)x+1≥0且2-x≥0,则-1≤x≤2 $
$解:原式=a²-(\sqrt{7})²$
$=(a-\sqrt{7})(a+\sqrt{7})$
$解:原式=(\sqrt{3}x)²-(\sqrt{2})²$
$=(\sqrt{3}x+\sqrt{2})(\sqrt{3}x-\sqrt{2})$
$解:x-2≥0,则x≥2$
$∴式子有意义的x的范围为x≥2$
$解:原式=3$
$解:原式=3+18$
$=21$
-1
上一页
下一页